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The pattern and propagation of waves excited by forcing effects that may 
oscillate with a frequency go and are travelling with a uniform velocity U along 
the axis of rotation in a rotating stratified liquid are studied by employing the 
technique of Lighthill. The fluid is assumed to be an unbounded, inviscid, incom- 
pressible, non-diffusive, rotating stratified liquid, rotating with a constant 
angular velocity Q about a vertical axis and with a density decreasing vertically 
upwards. It is found that the effect of rotation on stratification or vice versa is to 
reduce the region of disturbance and to split the wave crests for go += 0. The 
periodic nature of the forcing effect excites various systems of waves which are 
otherwise coincident. 

1. Introduction 
The phenomena occurring in a rotating stratified liquid differ markedly from 

that in a rotating liquid or in a stratified liquid [see, for example, Carrier 1965; 
Barcilon & Pedlosky 1967; Krishna & Sarma 1969, etc.]. Near thermoclines, the 
stratification effects are quite predominant and the effects of rotation are usually 
ignored. Similarly, in well-mixed regions away from thermoclines, only rotation is 
taken into account and not the stratification. But in a low-frequency movement 
of the ocean, or when the forcing effect has a low frequency, the motion seems to 
depend sufficiently on both rotation and stratification. Motivated by this, in this 
paper we have considered waves excited by forcing effects that may oscillate with 
a frequency go and travelling with a uniform velocity (0, 0, U )  in an inviscid, 
incompressible, rotating stratified liquid rotating with a uniform angular velo- 
city Q about a vertical axis. 

The waves in a rotating sea with a variable density have been extensively 
treated by Love (1891), Fjedlstad (1933), Groen (1948) and Eckart (1960) and 
a brief sketch of this work is given in La Fonda (1962), Lighthill (1966) and 
Phillips (1 966). When both rotation andstratification are taken into account, then 
the fluid is characterized by two natural frequencies, viz. 2Q and N ,  where N is the 
Brunt-ViiisiilB; frequency and their influence depends on whether N is greater or 
smaller than 2Q. If 2Q < N ,  then the rotation would modify the internal waves 
by adding a low-frequency cut-off at 2Q to the existing high-frequency cut-off 
at N .  When N < 2Q, which can also be of geophysical interest, the inertial modes 
are subjected to high- and low-frequency cut-offs at 2S2 and N respectively. 

When a steady forcing effect translates with a uniform velocity U along the 
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axis of a homogeneous rotating liquid, it excites two systems of waves (Lighthill 
1967). The first system consists of waves of uniform length mU/Q in all directions 
behind the forcing region with hemispherical crests. The second system consists 
of unattenuated waves propagating both ahead of and behind the forcing region 
in a ‘Taylor column’. If we now introduce a density gradient (however small, it  
might be) such that N < 2Q then it is shown in $4 that the second system of 
waves propagating in the upstream direction is completely eliminated. All the 
downstream waves coalesce into a single system with cusp-shaped crests and 
propagate only downstream with a cone as their envelope. Here the waves 
independent of the vertical co-ordinate Z do not exist. 

If the forcing region, instead of being steady, oscillates with a frequency uo in 
a homogeneous rotating liquid then three cases will arise according as uo 5 2Q 
(see Nigam & Nigam 1962). For go < 2Q there are three systems of waves, say 
8,) 8, and 8, with 8,, 8, propagating only downstream each confined to a 
cone and 8, propagating in all directions except in an upstream cone. The crests 
of 8, are cusp-shaped and those of 8, and 8, extend to infinity. When a. 2 2Q, 
8, disappears and P,, 8, propagate as in the above case, but for a. > 2Q the 
crests of 9, are also cusp-shaped. The crests of 8, and 8, always have a point in 
common, the point where they touch the axis of rotation, so that both the systems 
have a single wave front. When stratification is also present, one could broadly 
consider three cases according as a. < N ,  N < cr, < 2!2 or 2Q < a,. We will see in 
$ 5 that the first and foremost effect of stratification for any uo + 0, is to split the 
two systems 8, and 8, a t  their common point and to separate them. Here again, 
there are three systems of waves for N < cro < 2!2 and two otherwise. For cro > N 
the propagation of waves is analogous to that in a homogeneous liquid with the 
exception that the shape of the crests is slightly modified and the enveloping 
conical regions are diminished. But the waves appearing for uo < N have no 
counterparts in the homogeneous case. 

The wave pattern produced by a steady disturbance moving vertically in a 
stratified liquid has been investigated by Warren (1960), Mowbray & Rarity 
( 1967u, b ) ,  Rarity (1967) and Lighthill (1967). Here the waves excited belong to 
a single system of waves propagating in all directions below the forcing effect with 
a ‘flared skirt’ shape of crests. In  0 4, we will see that the effect of rotation on 
these waves is to eliminate longer waves whose directions are close to the hori- 
zontal and as a result the remaining waves get folded upon themselves and 
propagate downstream in a cone with cusp-shaped crests. 

Axisymmetric internal waves generated by a travelling oscillating body have 
been studied both theoretically and experimentally by Stevenson (1  969). We 
observe that for 0 < uo < N ,  the axisyrnmetric wave-number surface has two 
open infinite branches, one passing through the origin and the other through 
(0, 0,  - ao /U)  and they are connected by a bulb-like closed portion. Let us denote 
them by G+(cro), G-(uo) and G1(uO) respectively. For frequencies in this range 
there are two system of waves, say B, and 9,. The systems B,, corresponding to 
G+(ao), propagates downstream confined to the cone 

H+(go): X2+y~-COt201(Z- Ut) ,  = 0, 2 -  Ut < 0, 
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where O1 = tan-l [ao /U(N2  - (~$1. The second system g,, which is composed of 
waves corresponding to G-(cr,) and Gl(g0) propagates in. all directions without 
penetrating into the extension of H+(g0) to the upstream side. For go = 0 the two 
systems coalesce into the single system mentioned in the above paragraph. The 
waves corresponding to G-(gO),  for all go, propagate close to the negative x-axis 
confined to the cone 

H-(g,): X2+y2--COt2O2(Z- U t ) ,  = 0, 2- U t  < 0, 

where 8, = tan-l (cro/UN), while those corresponding to G,(c0) propagate outside 
H-(v0) .  As go -+ N ,  9, spreads out and propagates in all directions while 9l 
shrinks and disappears completely when go = N .  For go > N ,  Gl(a,) becomes an 
infinite branch and has a monoclastic circle (a curve which divides the wave- 
number surface into synclastic ( K  > 0 )  and anticlastic ( K  < 0) regions. Hereafter 
we refer to this circle(s) by m.c.(s)). So the system Y2 folds back on itself and 
propagates with kite-shaped crests in a cone Hl(cro), the cone with the vertex a t  
the forcing effect and with generators parallel to the normals on m.c. Stevenson 
(1969) also gives six schlieren photographs of the wave pattern generated by an 
oscillating sphere moving vertically in a stably stratified salt solution along with 
theoretically predicted shapes. The agreement between the theory and the 
experiments is excellent. If, besides stratification, the fluid is also subjected to 
rotation so that 2sZ < N then we find that rotation splits the wave-number 
surface at (0, 0, - a,/U), the point where Gl(cr,) and G-(go) meet and separates 
them into two disjoint branches ( 5  5 ,  case ii). This induces a new system of waves 
for go < 2sZ and splits 3, into two for higher frequencies. 

It is interesting to note that the waves propagating along the z axis with 
lengths 27r/(2Q & go)  are absent with stratification. Also when cr, = N ,  whatever 
may be the rotation, the disturbance propagates in all directions. 

2. Equations of motion and formal solution 
Consider an unbounded inviscid incompressible non-diffusive liquid rotating 

like a rigid body about the vertical axis 08 with a constant angular velocity CI 
and with an undisturbed mean density distribution p ( x )  increasing with depth. 
The equations governing the motion of the liquid referred to a frame OX YZ 
rotating with the liquid, are 

p d q / d t  + 2sZpk x q + v p  + kgp = 0, (1) 

v .q = 0, dpldt = 0, (2), (3) 

where q = (u, v, w), p ,  p and g denote the velocity vector, pressure, density and 
acceleration due to gravity respectively and 8 is the unit vector along 02. 
Assuming that the motions are small and linearizing about a state of rest in the 
frame O X Y Z ,  (1)-(3) become 

29 

a q p t  + 2stL x q + (l /F) v p  +gk(p’/P) = 0, 

a p p  + g . vp = 0, 

(4) 

v.q = 0, ( 5 )  

(6) 
F L M  46 
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and now q, p ,  p' denote the perturbed quantities over the undisturbed state. 
Eliminating p ,  p', u. and v from (4)-(6), we get 

in which N = ( -  (g / j j )  djj/dz)* is the Brunt-Vaisala frequency (assumed to be 
constant), V2 and 0% are the three-dimensional and horizontal Laplacians. If we 
invoke Boussinesq approximation in (4), that is if jj is replaced by po( = p(0)) in 
the inertial terms, in place of (7) we get 

In this paper we are concerned only with (8). When w is determined from (8) the 
other components of the velocity can be found from (6) and the vertical com- 
ponent of the vorticity equation, viz. 

aw,lat = a s l a W / a z .  

For periodic disturbances with frequency U,  (8) is hyperbolic or elliptic 
according as G lies inside or outside the interval ( N ,  2Q) or (2Q, N ) .  N > 2Q 
corresponds to the case of a strongly stratified rotating liquid in which the 
buoyancy forces are dominant over the Coriolis forces while N < 2Q is the 
opposite case. The former situation arises in the regions of thermoclines in the sea 
and the latter may arise in well-mixed regions. 

Following the technique of Lighthill (1967), the nature and propagation of the 
waves generated by a forcing region of finite extent have been studied. If the 
forcing region (it could be anything like an oscillatory source or a moving body, 
etc.) moves along the z axis with a uniform velocity U and oscillates with a 
frequency a, it  will produce waves of frequency a, + Un (due to Doppler effect) 
where k = ( I ,  m, n) is the wave-number vector. The effect of the forcing region 
can be incorporated in the governing differential equation (8) by replacing the 
right-hand side by a non-zero forcing term 

e-ibo "fr - Ut) ,  (9) 

where r = (x, y, x )  is the position vector. 
The differential equation (8) admits a plane-wave solution of the type 

w = w,exp[i(-at+Iz++y+nz)], (10) 

if the dispersion relation 

S(a,) = [ ( a o + ~ n ) 2 - ~ 2 ] ( b 2 + m 2 ) + [ ( ~ o + U n ) 2 - 4 ! 2 2 ] n 2  = 0 (11) 

is satisfied (since u = a,+ Un). If f(r)  vanishes outside a finite region, taking 
Fourier transforms a formal solution of (8) with (9) as its right-hand side may be 
obtained as 

where f(r) = jm Jw Srn P(k)eQerdZdmdn. 
-m -m - w  



Waves generated in rotating stratified liquids 451 

A method of obtaining a unique solution (satisfying the radiation condition) 
of the integral (12) is explained in Lighthill (1960, 1967). It is shown that the 
amplitude of the waves generated by the forcing term (9) is asymptotically 

(provided K + 0 )  where R = r - Utl, V is the gradient operator in (1, m, n) space 
and K is the Gaussian curvature of the surface (1 1) .  The amplitude of the waves 
corresponding to a monoclastic curve of (1  1) decays like R-8 instead of R-l. 

The directional distribution of waves, their surfaces of constant phase and the 
effect of N, 252 and go on them are discussed in the following sections. 

3. The wave-number surface and the surfaces of constant phase 
The equation (1 1) represents a surface of revolution, denoted by &'(go), in the 

wave-number space, the n axis being the axis of revolution. It consists of two 
disjoint branches, which we denote by &(a,,), meeting the n axis a t  

Ai(Vo) = -(a, T 2Q)/U 

and are bounded by the asymptotes B*(cT,) = n - (go 'F 2Q)/U = 0 (see figures 1 
and 3). (It must be noted that the notation S*(uo) denotes #+(a,) and S(cro) and 
not #+(go) or #-(go).) S(cro) also depends critically onf2 = 4Qz/N2 and is curved 
outwards or inwards to the region bounded by &(a,) according as fz 1 and it 
coincides with B*(a,) when f = 1. Besides go, &(go) depend only on Q and 
B*(co) depend on N. When 52 + 0, A+(go) and A-(go) move closer and coincide 
with ( O , O ,  - a,,/U). Similarly B+(co) and B-(r,J coincide with n = - uo/U when 
N-tO. 

The monoclastic curves on S(cro) are the circles generated by the points of 
inflexion of the meridional sections of the surface S(ro)  and they are the real roots, 
with 171 lying between N and 2Q, of the equation 

r5 - 3v07* + 2N273+ 8S22a,72 - 12Q2N27 + 4Q2N2a0 = 0, (14) 

where 7 = go+ Un. There is always one m.c. on S-(o,) corresponding to the 
negative real root of (14) and #+(a,) has a m.c. whenever go does not lie between 
N and 2Q. 

The shape of the wave crests and the surfaces of constant phase, which are Dhe 
polar reciprocals of 8(cro), are given by the parametric equation (Lighthill 1967, 

U(4Q2-7')4 (7'- N2)* p. 730) 
p = (x2+y2)4 = A 

7(4522-N2) (q-ao)2 ' 

whereA4isaconstantvalueofthephasek.randN < 171 < 2Q(or2Q < 171 < N). 
The equation (15) represents two surfaces $!*(go) corresponding to positive and 

29-2 
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negative values of y and they are the polar reciprocals of S*(a,) respectively (see 
figures 2 and 4). The surfaces (15) will have a cuspidal edge corresponding to  a 
monoclastic curve on S(CT,) (Lighthill 1960, p. 410). F-(cT,) is always cusp shaped 
with a circular edge of regression which we denote by R-. It is tangential to the 
x axis at the point T-, the inverse point of the point at infinity on S ( c r , )  and cuts 
the x axis orthogonally a t  the point Q- which is the inverse point of A-(a,). 
Whenever there is a m.c. on S+(g0) its polar reciprocal F+(v,) has similar features 
and the corresponding points are denoted by R,, T+ and Q,. 

The phase velocity of the waves relative to the undisturbed fluid is given by 
V, = ak/lk12 or 

in the direction of yk, where 7 = go + Un. For any particular 7 lying between N 
and 2Q, V, will be the phase velocity ofthe waves at the point (p,  x )  on the surface 
of constant phase (15). The direction and the relative magnitude of V, are shown 
by the arrows in figures 2 and 4. There is a zero phase velocity at the points where 
the surface of constant phase touches the x axis. These points, therefore, remain 
fixed while the rest of the surface of constant phase increases (or decreases) in size 
remaining geometrically similar. Due to  the Doppler effect the waves with 
maximum (or minimum) phase velocity are not always those with maximum 
(or minimum) wavelengths but they are given by the roots of the equation 

73-2gO~2+4iv2  = 0. ( 1 7 )  

4. Waves excited by steady travelling forcing effects 
For steady disturbances (a, = 0) the wave-number surface S(CT,) becomes 

The points of inflexion of (18) may be determined from (14) and they are given by 

n = + ( l / U ) [ - N 2 + ( N 4 + 1 2 5 1 2 N 2 ) ~ ] 1 -  (19) 

and correspondingly there is a m.c. on each branch of S(0).  The arrows? of S(0) 
point in the downstream direction as shown in figures 1 and 3 and those on m.c. 
make the maximum (constant) angle q5 with the negative n axis where 

4[ 1 + j 2  - (1 + 3f 2)i]4 
[( 1 + 3f2)* - 2]t 

4512 
cot q5 = 7 f 2 = - p T i V " .  

This implies that all the waves generated at the forcing region propagate only 
downstream confining themselves to  the cone 

C(0): x2+y2-tan2q5(z- Ut)2  = 0, x -  Ut < 0 (21) 

t The arrows are the normals to the wave-number surface S(ao) drawn in the direction 
of S(u0 + 6), where 6 is a small positive quantity. In other words, the normals are drawn in 
the direction of uo increasing which is the direction of the group velocity. Hence the arrow 
at any point k on S(a,) indicates the direction of propagation of waves whose length is 
2nllkl .  
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and the decay of the amplitude is given by (13). The surfaces of constant phase 
J’*(O) are coincident and cusp-shaped and C(0) is the locus of the cuspal points. 
The waves corresponding to  the points on the m.c. propagate along the generators 
of C(0) and those corresponding to  the other points of X(0) propagate within the 
cone. As the surface S(0) is symmetrical about the origin, for every point k on 
S(0) - k is also a point on S(0) but the solution which satisfies the radiation 
condit,ion, viz. (13), takes only one out of each pair of points k (Lighthill 1960, 
p. 407). Therefore there is only one system of waves whose lengths vary from 
0 to  nU/Q.  The waves with maximum length, nUl f2 ,  travel along the negative 
x axis. Along each direction within C(0) there are two waves, a shorter one and 
a longer one (in fact, this will be the situation whenever the surface of constant 
phase is cusp-shaped) and a single wave along C(0). As the direction of waves 
changes from z axis to C(O), the lengths of shorter waves increase and the longer 
ones decrease. 

Since k and - k correspond to the same point on the surface of constant phase 
F(O), a t  each point on F(0)  there are two phase velocities, according as the point 
is considered as the inverse of k or - k, which are equal in magnitude but opposite 
in direction. One can overcome this ambiguity by picking up the correct waves 
which correspond only to one in the pair f k with the help of the radiation 
condition which tells that  only points with (r . GS)/(aS/&) .S 0 contribute for the 
asymptotic formula (13) (see Lighthill 1960, equation (69) with w replaced by 
- CT). Using that r = AVS/k. V S  on a surface of constant phase, in the above 
inequality, we get that only points with n < 0 contribute for (13). Hence the 
radiation condition eliminates completely the waves corresponding to X+( 0) and 
the disturbance contains only those corresponding to S-( 0). The relative magni- 
tude and direction of the phase velocity, given by (16), on F(0)  are shown in 
figures 2 and 4. The phase velocities on R-Q-R-, the portion within the cuspidal 
edge, are directed downstream for all f but on T-R-, the cone-like portion, they 
are directed towards or away from the axis according as f 2 1. The vertex T- has 
a zero phase velocity and so remains fixed while Q-, the point where F(0)  cuts the 
z axis, has the maximum velocity $7. 

When f > 1, the cuspidal edge of the wave crest is towards the vertex of C(0) 
[see F(O), figure 21. Asfincreases from 1 to co (i.e. as N -+ 0 ) ,  the semi-vertical 
angle increases from 0 to in and correspondingly the surface of constant phase 
also becomes bigger. When f --f co, the asymptotic planes B*(O) and the m.c.s 
move closer and finally coincide with n = 0 so that the portion within and outside 
the m.c.s respectively become a sphere and two coincident planes (as in the 
homogeneous case discussed by Lighthill (1967, p. 744)). So, as density decreases, 
the lengths of all waves increase. In  particular, the lengths of the waves belonging 
to  the portion within the m.c.s increase to  attain a uniform value nUlQ and when 
N = 0 these waves reduce to  waves of uniform lengths with hemispherical crests 
and the waves corresponding to the rest of S(0) reduce to  waves propagating in 
a ‘Taylor column’. Thus in a slightly stratified rotating liquid (f > 1) the 
buoyancy forces compress the downstream waves to  a conical region by converting 
them to cusp-shaped ones and eliminating completely the unattenuated waves 
propagating ahead in a ‘Taylor column’. Here all the waves depend on z also. 
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When f = 1, &(O) coincide with B*(O) and the corresponding waves trail 
behind as a straight steady unattenuated disturbance. 

For f < 1, the wave crests are reversed, in the sense the regression edge is 
away from the vertex of C(0) [see P(O), figure 41. As f -+ 0 (i.e. as f2 -+ 0) q5 
increases from 0 to Qn. Also A+(O) and the monoclastic circles move closer and for 
Q = 0 they coincide with the origin. As a consequence, the lengths of all the 
waves, in particular those corresponding to the surface within these circles, 
increase and the curved portion within the cuspidal edge tends to infinity and 
when Q = 0 the wave-crests take the pattern of a 'flared skirt' [see Lighthill 
1967, p. 7431. Thus the effect of Coriolis forces in a strongly stratified rotating 
liquid is to eliminate longer waves which are well away from the path of the 
disturbance and to  fold back the rest of the waves to propagate in a cone with 
cusp-shaped crests. 

5. Waves excited by travelling oscillatory forcing effects 
We now consider the more general case of waves generated by aperiodic forcing 

effect, with frequency go, moving vertically upwards with a velocity U along the 
axis of rotation. When go + 0 the wave-number surface S(vo) becomes asym- 
metric [see figures 1 and 31. The nature of S ( c r , )  remains the same as in the steady 
case except that it shifts away from the origin and becomes more and more flat. 
The other branch X+(a,) undergoes different changes for different ranges of go in 

FIGURE 1. The rneridional section of the wave-number surface S(c7,/2Q) forf2 = 4. 
B,(.  . .) are the asymptotes and . denotes the point of inflexion. 
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relation to Nand 2Q. As a result, the two apparently coincident systems of waves 
corresponding to &(O) split up. 

The waves corresponding to S(CT,,) for all f and go propagate downstream as 

FIGURE 2. The meridional sections of the surface of constant phase corresponding to 
S(r7,/2sZ) shown in figure 1. The inserted figures a t  the left-hand bottom and top corners are 
respectively the enlargement of the surfaces of constant phase P(aO/2Cl) and F(0) corre- 
sponding to #-(u0/2n) and S(0). The main figure corresponds to those of X+(c7,/2sZ). All the 
curves are drawn for the same phase value. The arrows on the curves represent the direction 
and relative magnitude of the phase velocity compared with the velocity of the forcing 
effect U, also represented by an arrow. +- and -o+ respectively denote the maximum and 
minimum phase velocities. . . . . ., the asymptotes. 
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in the steady case, with cusp-shaped crests, and are confined to a cone C-(uo), 
determined by the m.c., and its semi-vertical angle decreases from that of C ( 0 )  
as u,, increases; the wavelengths are also decreasing. The surfaces of constant 
phase F-(uo) for 2Q > N and 2Q < N are shown in figures 2 and 4 and, as in the 
steady case, they are reversed. F-(ao) being the polar reciprocal of S-(ao), deter- 
mination of the phase velocities is a simple matter and they are shown in figures 2 

2 

.............. 

__  -- -t-- --_ 
-- -- --_ 

'.2-. .............. 

............. S41.3) B - (  1.0) 
*-*-.-:, ._ _._ 

.............. B-(1 .3 )  

FIGURE 3. The meridional sections of the wave-number surface S(r,/N) fort2 = 0.36 and for 
various values of ",IN. B,(. . .) are the asymptotes and 0 denotes the point of inflexion. 

and 4. For all f the portion within the cuspidal edge, viz. R-Q-R-, travels in the 
downstream direction while the cone-like portion generated by T- R- travels 
towards or away from the x axis for f 2 1 respectively. For any uo and for 
f 2 1/42 the waves with maximum phase velocity 2Q2/(2Q+a) (which is less 
than U )  are found along the z axis (at Q-),  But for 0 < f < 1/42 the maximum 
velocity appears at Q- only when uo c SQ3/(N2 - SQ2) and for higher frequencies 
it appears a t  the points which are away from the axes of rotation as shown in 
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figure 4. They correspond to the negative root of (1  7) .  This system of waves may 
appear clearly for low frequencies and at  higher frequencies C-(go) becomes very 
small. In the following, we discuss the wave systems corresponding to A'+(vo). 

FIGURE 4. The meridional sections of the surface of constant phase corresponding to S(a,/N) 
shown in figure 3. The main figure gives the surfaces of constant phase corresponding 
to S,(a,/N) and their phases for ao/N = 0,0.3, ..., 1.3 are respectively in the ratio 
25: 10 : 1: 1 : 1: 10. The inserted figure a t  the left-hand bottom corner is an enlargement of the 
surface of constant phase corresponding to  S-( u,/N) and they have the same phase value. 
The arrows have the same meaning as in figure 2. 
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Case (i). N < 2Q 
For any go, &+(go) and X+(O) have similar characteristics, namely &+(a,) lies 
entirely to the positive side of the plane n = 0 and it has a m.c. [see &+(0-5), 
figure 11. For frequencies much less than N the arrrows of X+(o,) point to  the 
downstream direction indicating that the waves trail behind the disturbance 
with cusp-shaped crests [see F+(0.5), figure 21 confining themselves to a cone 
C+(g,)o)t determined by the m.c., viz. the cone with vertex a t  the forcing effect and 
with generators parallel to  the arrows on the m.c. As cro approaches N the m.c. 
moves closer to  the asymptotic plane, its radius gradually decreases to  zero and 
the inclination of the arrows a t  the m.c. increases to r. As a consequence the semi- 
vertical angle of C+(cr,) increases to r from its value a t  go = 0. When go is close to  
N the waves propagate both upsteam and downstream except in the region 
outside C+(a,). As C+(go) expands, the surface of constant phase becomes larger 
in such a way that R+ goes to infinity along the cone while T+ tends t o  minus 
infinity along the z axis. Due to the translation of &+(go) the wavelength increases 
with a,. Unlike F-(vo), the portion within the cuspidal edge of $'+(go) travels 
upstream while the cone like portion shrinks towards the axis for all f. When 
N 2 / 2 0  < vo < N the waves of maximum length Z;rrNU[(4Cl2-N2) (Ng-gi)]-h 
are found in the direction making an angle tan-l[ - N(N2 - cr$ (4Q24 - N4)-t] 
with the positive z axis but for other frequencies they are always found along the 
z axis. From the nature of the Sturm's functions of (17) i t  can be seen that when 
1 < f < 1.618 and for l/f > ( T ~  > ( 2  - l/f 2)-1, where c1 = go /20  the maximum V, 
occurs at the smallest positive root of (1 7) ,  which corresponds to  a point away 
fromthexaxis. But when 4; < f < 1*618andforJ(27/32) l/f < gI < ( 2 -  l/f2)-1, 
before attaining the maximum value, V, reaches a local minimum a t  the biggest 
positive root of (17) and so for these frequencies the maximum F, need not be 
greater than its value a t  &+. The same thing may be expected when f > 1-618 
since there is a maximum and also a minimum for 4(27/32) l/f < g1 < l/f. For 
rl < 1/(27/32) l/f[or (2-f-2)-1 iff < 4(3/2)] themaximum%(= 2QU/(212-a0)), 
appears a t  Q+ and it is always greater than U .  I n  figure 2, f is taken equal to 2 and 
the maximum V,, therefore, occurs a t  &+. 

When go = N the asymptote disappears and S+(g0) becomes a finite closed 
surface passing through the origin [see IS+( l ) ,  figure 11 with arrows pointing in all 
directions and so the waves propagate in all directions. The waves of minimum 
length, n U / Q  propagate in the direction of the negative x axis and the wave- 
length increases to infinity as the azimuthal angle increases to  r. The surface of 
constant phase F+(l) is shown in figure 2 .  The phase velocities on F+(N) are 
always directed inwards and at any point V, is greater than U .  So, as time pro- 
gresses, F+(N) can overtake the forcing effect and shrinks closer to the z axis. 
When f < 1.618, the waves at the point where l?+(N) cuts the x axis has the 
minimum phase velocity 20U/(2!2 - go). But for f > 1.61 8 the phase velocity 

p The various cones mentioned in the discussion are not shown in figures 2 and 4, but 
their generators are obtained by the following rule: if the surface of constant phase has an 
asymptote, then the asymptote itself is a generator and for the cusp-shaped one, the line 
joining the cusp and the origin is a generator. 



Waves generated in rotating stratiJied liquids 459 

decreases from 252U/(252--,) to a still smaller value, given by 7 = 1.618N and 
then increases indefinitely (see F+( l), figure 2 ) .  

When N < go < 2s1 the meridional section of S+(ao) is a nodal curve asymptotic 
to the line n = (N-a,)/U < 0 with origin as the double point [see S+(1.5), 
figure 21. At the origin the slope of the arrows to S+(ao) has a discontinuity even 
though the slope of S+((T,) is continuous. So the direction of the arrows clearly 
show that there are two systems of waves; the first one corresponding to the 
closed portion of the surface S+(uo) and the other t o  the remaining portion. The 
fist system of waves propagates both upstream and downstream except in the 
cone Cy)(ao) given by 

X2+y2-(z-Ut)2COt2~=0, 2-Ut > 0 (22) 

$ = tan-l[(452~-ai)/(u~-"a)]4 (23) 

and the latter inside the cone C?'((T,), given by ( 2 2 )  with z -  Ut < 0, where 

is the angle made by the arrow to  the closed portion of S+(cr,) at the origin with 
the negative n axis. The shapes of crests are given by F2)(1-5) and Fy)( 1-5) in 
figure 2 but it must be noted that .FT)(go) and $'?)(ao) will not meet each other 
for all go. As go increases to 252 the node on S+(a,) shrinks to a cusp at  the origin 
with the n axis as the common tangent and $ increases to in. So as go increases 
the cones C$)(ao) and C?)(a,) become bigger and $'$)(go) becomes more and 
more feeble and moves away from the origin while P?)(a,) moves towards the 
origin. The nature of the phase velocities on Fy) (go)  is similar to F+(N) but it 
travels with greater speed. The point at which FT)(c0) cuts the z axis always has 
the minimum phase velocity 252U/(252-a0). Fy)(vo)  always lies below the 
horizontal plane passing through the point at  which Fy)(ao)  touches the x axis 
and it travels towards the z axis with speed increasing with depth. 

When go = 252, S+(2) in figure 1 shows that the first system of waves corre- 
sponding to the closed portion disappears completely and there will be only one 
system of waves propagating in all directions below the forcing region. The shape 
of the crests is given by F+(Z) in figure 2. 

When go > 252, X+((T,) lies entirely in the region n < 0 and a m.c. re-appears 
on it. The corresponding waves are therefore cusp-shaped and propagate down- 
stream within the cone C+(a,) determined by the m.c., but now the cuspidal edge 
is away from the vertex of C+(ao) [see F+(2.5), figure 21. As go increases, C+(go) 
becomes smaller and the wavelengths increase. Here the V, on R+Q+R+ is 
directed downstream while on T+R+ is directed towards the z axis and the 
maximum V,( = 2QV/(cr0 - 2 0 ) )  occurs at &+and the maximum V, 5 U according 
as a,: 4 ~ .  

Case (ii). Z s 1  < N 
The meridional sections of &(a,) for various values of go and f = 0-36 are shown 
in figure 3. A close comparison of figures 1 and 3 shows that even though the 
propagation of crests is different, the qualitative features of the waves, viz. the 
propagation of waves and the shape of the wave crests, in the present case are 
analogous to what we have discussed in case (i) and are pointed out below. For 
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2Q < CT, < N the meridional section of &'+(a,) has the shape of a nodal curve but 
now the closed portion lies in the negative side with arrows pointing outwards 
and the infinite branch lies in the positive side with arrows pointing in the down- 
stream direction. The direction of the arrows and the shape of the surface of 
constant phase (see S+(0.8) in figure 3 and Fy'(0.8) and F$?(O.8) in figure 4) show 
that there are two systems of waves propagating exactly as in case (i). For 
5, = 2Q and a, = N the qualitative nature of the waves and the shape of the 
surface of constant phase is similar to  case (i) [see #+(0.6), X + ( l ) ,  F+(0.6) and 
F+(1) in figures 3 and 41. The waves and the corresponding cones, in both the 
cases, undergo the same changes when a, changes from N to  2Q. For a. outside 
the interval [ZQ,  N ] ,  &'+(ao) has a m.c. and the propagation of waves for a, < 2Q 
and a, > N are respectively similar t o  those in case (i) for uo > 2Q and 5, < N .  
As in case (i), the semi-vertical angle of C+(a,) tends to An- and n respectively when 
IT, tends t o  2Q and N .  But the propagation of waves crests in case (ii) and in its 
analogous situation of case (i) are opposite to one another, that is to say, the phase 
velocities in one case are reverse of the other. Whenever 1 < ao/N 6 f 3 / ( 2 f f " -  1) 
(or co iff < l/.J2) the maximum phase velocity occurs a t  points which are away 
from the x axis and for all other frequencies the maximum (or minimum if 
2Q < go 6 N )  appears only a t  the points where the surface of constant phase cuts 
the x axis. 

Thus for all N and 2Q there are two systems of waves for frequencies outside 
[ N ,  2!2] or [ Z Q , N ]  propagating downstream with cusped crests and three 
systems otherwise. 

We will next consider the influence of N and 2!2 for a fixed a,. If the plane wave 
solutions were to  exist then (1 1) restricts the Doppler-shift frequency, lao + Unl , 
to the values between N and 2!2, thereby confining S(a,) to  the region between 
A*(a,) and &(ao). Wavelengths corresponding to S ( c r , )  and X+(CT,) (for 
N < 2Q < a, or a, < 2Q < N )  are respectively bounded above by 27rU/(2Q + a,) 
and ~ ~ U / ( Z Q - - I T , ) ,  which are the lengths of waves propagating along the 
negative z axis, while those corresponding to the closed portion of $+(ao) for 
N < a, < 2!2 or 2Q < a, < N are bounded below by 277U/(2Q-a0). But the 
maximum length of the waves corresponding to  &'+(ao) for N2/2S1 < 5, < N < 2Q 
or 2Q < N < cr, < AN2 depends both on N and 2Q. As N or Q (or both) increases, 
due to stretching out of A*(a,) or B*(r,) (or both), S(a,) becomes bigger and so 
the waves propagating in any particular direction become shorter. The semi- 
vertical angles of all the cones depend on f and they all have a maximum value 
when N = 0 or Q = 0 and decrease gradually as f + 1 .  When f = 1, S*(a,) coin- 
cide with the planes B*(g,) and therefore the created disturbance consists of 
oscillatory unattenuated waves propagating parallel to the z axis in the down- 
stream direction. 

I n  the homogeneous case ( N  = 0 )  the asymptotic planes B+(a,) coalesce into 
a single plane n = - IT,/ U (see Nigam & Nigam 1962) and the two branches of the 
wave-number surface meet a t  infinity. So the surfaces of constant phase of both 
the systems LF2 and g3 (see introduction), which correspond to the wave- 
number surface on n < 0,  touch the axis of rotation a t  the point (0 ,  0 ,  - AU/ro ) .  
If stratification is also present, then B*(cr,) are separated by a distance 2N/U and 
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hence the two corresponding points, the points where F-(cro) and F+(uo) (or 
F ~ ) ( c r o )  if iV < cro < 2Q) touch the x axis, also get separated by a distance 

The nature and propagation of waves for 2Q > N and CT, > N basically have the 
same features as those in a homogeneous rotating liquid. But the waves corre- 
sponding to S+(a,) for cro < N < 2Q have no counterparts in the homogeneous 
case and they are induced by the buoyancy forces. The presence of stratification 
splits the wave crests, decreases the lengths and shrinks the enveloping cones. 

Just as stratification splits the wave crests in a homogeneous rotating liquid, 
rotation also has a similar effect on waves in a stratified liquid. A comparison of 
S(a,) [in case (ii)] and the corresponding wave-number surface for Q = 0 (viz. 

H-(1*3) 

T+ -3  -2 Q+.  - 1  Q- T- 
FIGURE 5. The figure shows how the meridional sections of F-(v,,/N) for f < 1 and u,/N = 1.3 
coalesce into a single crest T+R+T- asf -+ 0. The values on the curves denote the value off. 
T+R+S, and T-R-S- are the meridional sections of F+(go/N)  and F-(uO/N) and when 
f = 0 they go into T+R,L, and LS-. .-, the generator of the cone mentioned against it. 

P(w,  a, p)  in figure 1 of Stevenson 1969) shows that when rotation is introduced, 
G,(cr,) and GJcr,) split at  (0, 0, - c o / U )  and separate into two disjoint branches 
S+(cr,) and SJu,), which are separated by a distance 2!Jz/U. Therefore the 
single system of waves corresponding to GJcr,) and Gl(cro) propagating within 
Hl(cr,) (or outside the extension of H+(cro) if cr, < N )  splits into two systems of 
waves; the first one propagating in C-(a,) and the second one propagating in 
C+(cr,) or outside C+(cr,) according as (T, > Nor  2Q < cro < N .  On introduction of 
rotation, however small it  might be, G-(cro) goes into S ( c r , ) ,  that is a m.c. appears 
on it and it cuts then axis orthogonally. So the waves propagating in H-(cr,) (here 
there is only one wave in each of the possible directions) fold back along the 
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direction of the arrows a t  the m.c. and propagate in all directions in the smaller 
cone C-(ao) with cusp-shaped crests. Similarly, when G,(ao) (plus G+(ao)) goes 
into #+(go), the corresponding waves spread out to propagate in all directions 
outside Cy’(cro) if 252 < a. < Nor inside C+(ao) if go > N ,  that is, they propagate 
in H-(ao) also. This arises from the fact that the slope a t  A+(ao) changes to &T 

from 8,. In figure 7, we have shown for 2Q < N < go how the waves corre- 
sponding to X+(ao) coalesce into the waves corresponding to G-(ao) and Gl(ao). 
Thus the splitting of crests in a strongly stratifiedrotating liquid for go > 2Q is an 
effect produced by rotation. The waves appearing for a. < 252 whose existence 
depends on 52, have no counterparts when Q = 0 and hence their appearance 
may be attributed to the interaction between Coriolis and buoyancy forces. 

6. Concluding remarks 

wave-number surface (ll), after changing U to - U becomes 
If a disturbance moves vertically downwards with a uniform velocity U ,  the 

[4Q2-(aO- Un),]n2 
[(ao- Un)2-N2] ’ P+m2 = 

and this is exactly the same as (11) when n is changed to -n. Hence as a. 
increases, the wave-number surface translates in the direction of positive n with 
arrows being reversed and now the parts played by #+(ao) and #-(ao) will be 
interchanged. Therefore the pattern and propagation of waves, with respect 
to the forcing effect, are identical in both cases. From figures 1-4 we see that 
as U increases #(ao) is magnified uniformly in all directions while .&(ao) are 
diminished. 

In  the special case, when U = 0, (1 1) reduces to a double cone 

and its semi-vertical angle decreases (or increases, if N > 2Q) as a. increases. 
Hence for N < go < 252 (or 252 < a. < N )  all the waves propagate along the cone 

x2 + y2 - [(a$ - N2)/(452’ - a$)] z2 = 0, (26) 

with amplitudes decaying like r-4 and no waves propagate within or without this 
cone. For a. outside [ N ,  ZQ] the flow is similar to potential flow. The phenomenon 
of the ‘Taylor-column’ which occurs both in rotating and stratified liquids for 
a. = 0 will now respectively appem for the values N and 252 of ao. 

Let us now consider the consequences of making Boussinesq approximation. 
The differential equation (7) has a plane-wave solution of the type 

exp [Ax + i(Zx +my + n z  - at)], h = N2/2g, (27) 

(28) 

is satisfied. When h = 0, (28) is identical with (11). The meridional section of (28) 

provided 
[ (go  + Un) ,  - N2] (1, + m2) + [(ao + Un)z - 4Q2] (n2 + h2) = 0 
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may be derived from those of (1 1) by increasing the square of the transverse wave- 
number, l2 + m2, of each point by 

[4Q2- (go+ Un)z]h2/ [ (ao+ Un)2-N2] .  (29) 

But h being very small (it is of order for an ocean) (29) is also very small 
unless (a, + Un)  is very close to N .  Thus Boussinesq approximation contracts the 
wave-number surface in the transverse direction without altering A*(a,) and the 
asymptotes. So the effect of Boussinesq approximation on all the waves, except 
those corresponding to #+(a,) for N < go < 2Q or 2Q < go < N ,  is to increase 
their length and the semi-vertical angle of the cones by a small quantity which is 
almost negligible. For N < a, < 2Q and A .t; 0, #+(a,) does not pass through the 
origin but cuts the n = 0 plane in the circle 

Z2+m2 = h 2 ( 4 Q 2 - 4 ) / ( r ; - N 2 )  

and so the sharp corner a t  the origin disappears. Now, if we move along the 
meridional section of S+(ao) from A+(o,) to .B+(ao), all the arrows lie on the 
right-hand side and their inclination with the n axis varies continuously. Also 
a m.c. appears and is close to n = 0. So the corresponding waves propagate in a 
cone determined by the m.c. But (29) being very small, the surface (28) is almost 
coincident with #+(go) and so the wave propagation is practically the same as in 
the case h = 0. Thus for frequencies in this range the Boussinesq approximation 
splits the waves into two systems of waves by allowing longer waves with 
lengths greater than Zn[(ai - N2)/h2(4Q2 - N 2 ) ] ) .  When h $: 0, S+(N) is no longer 
a closed surface passing through the origin, for when n is sufficiently small the 
term (29) is dominant and tends to infinity as n -+ 0. Therefore, the corresponding 
waves, instead of propagating in all directions, propagate without penetrating 
into a conical region upstream. Also, there are unattenuated waves, corre- 
sponding to the portion tending to infinity along n = 0,  propagating downstream 
close to the n axis and are independent of z. When a, = 2Q the cusp of #+(2Q) at 
the origin disappears and it touches the n = 0 plane at  the origin and a m.c., 
which is almost coincident with the origin, appears. As a result, the corresponding 
waves propagate downstream in a cone with semi-vertical angle slightly less than 
Qn with cusped crests. But the portion within the m.c. being very small and very 
close to the origin, the cuspidal edge (and the inside portion) will be far away from 
the origin and will be almost invisible. 

Finally, when the forcing effect is two-dimensional i.e. m = 0, it  is easy to see 
that the waves propagate exactly as in the axisymmetric case, with the exception 
that now the waves generated are two-dimensional in character, the cones 
become wedges and the amplitude decays like R-4. 

The authors wish to express their gratitude to Professor M. J. Lighthill for 
going through the paper and making many suggestions and also to Professor 
S. D. Nigam for the valuable discussions they had with him. 
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